Stingray 2.0便携式明渠流量计 水平速度记录仪
- 测量部分填充管道和明渠中的水位和速度
- 不需要水槽或堰
- 很低的功耗
- 使用标准碱性D-cell电池
- 130,000点数据记录器
- USB输出
- Windows软件
- LCD条形图显示
Stingray 2.0 Portable Level-Velocity Logger
- Measures water level and velocity in partially filled pipes and open channels
- No flume or weir required
- Extreme low power consumption
- Uses standard alkaline D-cell batteries
- 130,000 point data logger
- USB output
- Powerful Windows software
- LCD bar graph display
小巧便携
Stingray 2.0是一款紧凑型电池供电记录仪,带有超声波传感器。它通过开放通道,部分完整的下水道管道和附加管道监测流量监测的数据记录水平,速度和水温读数。用于流量调查,I&I研究,雨水,灌溉用水和污水处理。
流体动力学超声波传感器
Stingray 2.0使用浸没式超声波传感器连续测量通道中的速度和水平。传感器是密封的超声波单元,没有孔口或端口。它具有流体动力学形状,设计用于排放沉积物和桁条,以便在污水,雨水和溪流应用中可靠运行。QZ02L传感器安装在管道内或开放通道的底部。不需要特殊的化合物,工具或硬件。包括不锈钢安装支架。
由标准碱性电池供电
使用4个标准碱性D-cell电池,Stingray 2.0将运行长达4年!这些廉价的碱性电池可以在各地的商店中使用,并且具有很低的自放电率,它们可以在流量研究期间可靠地为节能的Stingray 2.0供电。
Stingray 2.0存储130,000个数据点,包括水平,速度和水温。在读数之间,它会断电以节省能量。
Stingray 2.0置信度显示
您可以使用内置LCD条形图显示来检查操作。它可以滚动水平,速度和温度读数,以及剩余的电池和记录器存储容量。60秒后显示屏将自动关闭以节省电池电量。
Compact and Portable
Stingray 2.0 is a compact, battery-powered logger with an ultrasonic sensor. It data logs level, velocity and water temperature readings for flow monitoring through open channels, partially full sewer pipes and surcharged pipes. Use it for flow surveys, I & I studies, stormwater, irrigation water and sewage.
Hydrodynamic Ultrasonic Sensor
Stingray 2.0 uses a submerged ultrasonic sensor to continuously measure both velocity and level in the channel. The sensor is a completely sealed ultrasonic unit with no orifices or ports. It is hydrodynamically shaped and designed to shed deposits and stringers for reliable operation in sewage, stormwater and stream flow applications. The QZ02L sensor mounts inside the pipe or at the bottom of an open channel. No special compounds, tools or hardware are required. A stainless steel mounting bracket is included.
Powered by Standard Alkaline Batteries
With 4 standard Alkaline D-cell batteries the Stingray 2.0 will operate up to 4 years! These inexpensive Alkaline batteries are available in stores everywhere and with an extremely low self discharge rate they will reliably power the energy-efficient Stingray 2.0 for the duration of your flow study.
Stingray 2.0 stores 130,000 data points including level, velocity and water temperature. Between readings it powers down to conserve energy.
Stingray 2.0 Confidence Display
You can check operation with the built-in LCD bar graph display. It scrolls through level, velocity and temperature readings, plus remaining battery and logger storage capacity. The display turns off automatically after 60 seconds to conserve battery power.
便携式水平速度记录仪规格
范围:本规范包括一个便携式水平速度记录仪,由Greyline Instruments,Largo,Florida/Long Sault,Ontario制造。
仪器应提供明渠和部分充水或充水管道中流量的液位、速度和温度读数的测量和数据记录。
A.通用
水平速度记录器包括一个潜水超声波传感器、连接电缆和一个带有电子设备和显示器的远程外壳。
系统应无活动部件。
液位测量精度应为液位的±0.25%。
速度测量精度应为读数的±2%。
B.传感器
超声波传感器的额定值应为IP68,用于连续浸入液体中。
利用超声波多普勒原理,传感器应测量0.1至12.5 ft/sec(0.03至3.8 m/sec)的流体速度。
利用超声波回声测距原理,水下传感器应测量管道或通道底部上方1“至15 ft.(25.4 m m至4.57 m)的液位。
最小可检测水平不得大于1”(25.4 mm)。
液位传感电路应包括用于自动温度补偿的温度传感器。
传感器应由316不锈钢和环氧树脂制成。
传感器工作温度应为5°F至175°F(-15°C至80°C)。
C.传感器
连接电缆
提供最小长度为25英尺(7.6米)的三同轴电缆,并将其封装在传感器头上。
传感器电缆应防水和电屏蔽。外露材料应仅为聚氨酯。
传感器应包括用于连接仪表电子设备的防水插头。
D.记录器电子设备
不需要校准。
液位速度记录器应测量管道或通道底部的液位和流速。
记录器电子设备的工作温度应为-5°至140°F(-20°至60°C)。
应具有USB输出,以便将日志文件传输到Windows计算机或笔记本电脑。
提供一个LCD条形图显示,以指示液位、速度和温度读数,以及剩余电池和记录器的存储容量。
应安装在防水IP67外壳内,带铰链、锁盖和防水传感器电缆入口。
记录器容量应为130000个数据点。每个数据点包括水平、速度和温度读数。
记录器采样率应由用户从10或30秒、1、2、5、10、30或60分钟中选择。
应由4个D电池碱性电池供电。电池寿命应与记录器的存储容量相匹配:15天,10秒采样率,60分钟采样率,最多4年。
E.PC软件
应包括Windows软件,用于从水平速度记录器中检索、显示、保存和导出日志文件。
应支持Windows版本,包括XP、Vista、7、8和10。
应将水平速度读数转换为渠道形状的流量,包括圆管、矩形、梯形和蛋形渠道。
应将水位读数转换为水槽和堰的流量。
应提供与水平速度记录器的“实时”通信,以显示刷新率不超过10秒的读数。
应允许操作员在10或30秒、1、2、5、10、15、30或60分钟内设置水平速度仪的记录速率。
应显示电池剩余寿命和记录器剩余容量。
应以图形和表格格式显示、保存、输出至打印机,并输出水平速度日志文件。导出日志文件应进行分隔,以便导入到电子表格或数据库程序。
应允许线性和体积单位的转换。
F.根据需要插入的可选功能
应包括50 ft/15 m长的传感器电缆延长线和水密连接器插头,以允许传感器安装与电子外壳之间的总距离为75 ft/23 m。
电缆延长线应采用耐用聚氨酯涂层进行屏蔽、潜水。
G.制造商
水平速度记录仪应采用Greeyline仪器的Stingray 2.0型号,并保证一年内不会出现材料和工艺缺陷。
软件应为Greyline仪器的“Greyline记录器”。
规格如有更改,恕不另行通知。如果您在申请中需要更多信息或建议,请联系Greyline。我们可以提供报价,并向贵公司所在地区的Greyline销售代表咨询。
PORTABLE LEVEL-VELOCITY LOGGER SPECIFICATIONS
SCOPE: This specification covers a portable Level-Velocity Logger as manufactured by Greyline Instruments, Largo, Florida / Long Sault, Ontario. The instrument shall provide for measurement and data logging of level, velocity and temperature readings from flow in open channels and partially filled or surcharged pipes.
A. GENERAL
Level-Velocity Logger to consist of a submersible ultrasonic sensor, connecting cable, and a remote enclosure with electronics and display. System shall have no moving parts.
Level measurement accuracy shall be ±0.25% of Level. Velocity measurement accuracy shall be ±2% of reading
B. TRANSDUCER (SENSORS)
Ultrasonic sensor shall be rated IP68 for continuous submersion in liquids.
Using the ultrasonic Doppler principle, the sensor shall measure fluid velocities from 0.1 to 12.5 ft/sec (0.03 to 3.8 m/sec).
Using ultrasonic echo-ranging principle, the submerged sensor shall measure liquid level from 1″ to 15 ft. (25.4 mm to 4.57 m) above the bottom of the pipe or channel. Minimum detectable level shall not be greater than 1″ (25.4 mm). Level sensing circuitry shall include a temperature sensor for automatic temperature compensation.
Sensor shall be constructed of 316 stainless steel and epoxy resin.
Sensor operating temperature shall be from 5°F to 175°F (-15°C to 80°C).
C. SENSOR CONNECTING CABLE
Provide minimum length 25 ft (7.6 m) tri-coaxial cable with potted bond to the Sensor head. Sensor cable shall be waterproof and electrically shielded. Exposed material shall be polyurethane only.
Sensor shall include a watertight plug for connection to the instrument electronics.
D. LOGGER ELECTRONICS
No calibration shall be required. The Level-Velocity Logger shall measure liquid level from the bottom of the pipe or channel, and flow velocity.
Logger electronics operating temperature shall be from –5° to 140°F (–20° to 60°C).
Shall have USB output to transfer log files to a Windows? computer or laptop.
Provide an LCD bar graph display to indicate level, velocity and temperature readings, plus remaining battery and logger storage capacity.
Shall be housed in a watertight IP67 enclosure with hinged, latching cover and watertight sensor cable entry.
Logger capacity shall be 130,000 data points. Each data point includes level, velocity and temperature reading.
Logger sample rate shall be user-selectable from 10 or 30 seconds, 1, 2, 5, 10, 30 or 60 minutes.
Shall be powered by 4 D-cell Alkaline batteries. Battery life shall be matched to Logger storage capacity: 15 days at 10 second sample rate up to 4 years at 60 minute sample rate.
E. PC SOFTWARE
Shall include Windows? software to retrieve, display, save and export log files from the Level-Velocity Logger. Shall support Windows versions including XP, Vista, 7, 8, and 10.
Shall convert level-velocity readings to flow for channel shapes including round pipes, rectangular, trapezoid and egg-shaped channels. Shall convert level readings to flow for flumes and weirs.
Shall provide ‘real-time’ communication with the level-velocity logger to display readings with a refresh rate of 10 seconds or less.
Shall permit the operator to set logging rate of the level-velocity instrument from 10 or 30 seconds, 1, 2, 5, 10, 15, 30 or 60 minutes.
Shall display battery life remaining and logger capacity remaining.
Shall display, save, output to a printer and export level-velocity log files in graph and tabular format. Export log files shall be delimited for import to spreadsheet or database programs.
Shall permit conversion of linear and volume units.
F. OPTIONAL FEATURES FOR INSERTION AS REQUIRED
Shall include 50 ft / 15 m length sensor cable extension with watertight connector plugs to permit sensor installation total distance of 75 ft / 23 m from the electronics enclosure. Cable extension shall be shielded, submersible with a durable polyurethane coating.
G. MANUFACTURER
Level-Velocity Logger shall be Stingray 2.0 model by Greyline Instruments and warranted against defects in materials and workmanship for one year.
Software shall be ‘Greyline Logger’ by Greyline Instruments.
Specifications are subject to change without notice. Please contact Greyline if you need more information or for advice in your application. We can provide quotations and refer you to the Greyline sales representative in your area.
流量计运作原理
仪器电子设备测量从发送声音到回声返回所需的时间。根据空气中的声速,可以高精度计算出液体表面与传感器的准确距离(0.25%范围)。
由于声速受空气温度的影响,灰线超声波液位传感器包括一个内置的温度传感器。水平/距离测量在传感器的整个工作温度范围内自动进行温度补偿。
传感器的位置应使其能清楚地“看到”液体表面,远离梯子、管道或其他障碍物。Greyline建议每10英尺深度距离侧壁1英尺(每3米深度300毫米)。来自搅拌器的假回波(在传感器下扫过)、湍流和波可以被仪器过滤和忽略。
Greyline模型的范围从简单的4-20mA液位指示发送器,到复杂的监控、控制和数据记录模型。返回greyline产品了解级别模型详细信息和规格。有关包括超声波在内的各种液位仪表技术的信息,请参阅废水液位测量技术。
测量管外脏污或充气液体的流量
多普勒效应由奥地利物理学家克里斯蒂安·多普勒于1842年提出。我们每天都能听到多普勒的例子:火车经过时的汽笛声改变音调,或者赛车驶过我们的位置时的排气噪音。
多普勒技术只适用于含有固体或气泡的液体来反射其信号。这些是“困难”的液体,可能会损坏常规流量计:泥浆、污泥、废水、磨料、粘性和腐蚀性化学品。由于传感器安装在管道外部,因此没有压降,也没有流动障碍物。
为了获得很好性能,多普勒传感器应安装在远离湍流产生装置(如弯管和三通)的地方,远离速度增加装置(如控制阀和泵)。典型精度为满刻度的±2%。多普勒仪器包括一个夹式超声波传感器、连接电缆和一个电子外壳,可以安装在附近方便的位置(500英尺/152米范围内)。传感器可以本质安全地额定安装在危险的额定位置。
需要非常精确的定时电路,但当传感器可以安装在流量均匀分布的管段上时,1%的精度非常典型。
由于超声波信号必须穿过管道到达接收传感器,因此流体中不得含有大量气泡或固体(小于2%)。否则高频声音会减弱,太弱,无法穿过管道。应用包括饮用水、冷却水、水/乙二醇溶液、液压油、燃油和化学品。
渡越时间传感器通常工作在1-2兆赫的频率。高频设计通常用于较小的管道,低频设计用于直径达数米的大型管道。
水槽和堰是专门设计的渠道形状,以表征水流。常见的类型有矩形堰、V型槽堰、Parshall水槽和Palmer Bowlus水槽。水槽或堰型的选择取决于应用:流速、渠道形状和水的固体含量。请联系Greyline Instruments以获取有关为您的应用选择合适水槽或堰的建议。
灰线明渠流量计可以通过菜单选择校准到水槽或堰。明渠流量计电子设备使用内部公式计算流量(流量=k h n,其中“k”和“n”为常数,“h”为仪器测量的压头)。通过直接输入“k”和“n”常数,可以对不常见或自定义水槽进行校准。Greyline还提供了一个PC软件程序“find k&n”,用于根据水槽或堰流图开发校准常数。
Greyline明渠流量计包括非接触式超声波传感器、连接电缆和电子外壳,可安装在附近方便的位置(500 ft/152 m内)。传感器可以本质安全地额定安装在危险的额定位置。仪器显示、汇总、传输和控制,有些型号包括数据记录/流量报告系统。
在没有水槽或堰的情况下测量明渠流量。面积速度流量计连续测量水位和流速,以计算明渠或管道中的流量。
超声波传感器安装在管道或通道的底部。为了测量水位,传感器发送超声波脉冲,这些脉冲通过水传播并从液体表面反射出来。仪器精确测量回声返回传感器所需的时间。根据水中声速,测量声级精度为±0.25%。
用连续注入水中的超声多普勒信号测量流速。这种高频声音(640kHz)从悬浮在液体中的颗粒或气泡反射回传感器。如果流体在运动,回声以与流速成比例的变化频率返回。利用该技术,仪器测量流速的精度为±2%。
greyline面积流速流量计工作在部分满管和溢流管、矩形、梯形和蛋形通道中。
可选-单独的液位和速度传感器
一个单独的向下看超声波传感器可用于高充气或湍流应用。它通过将超声波脉冲通过空气传输到液体表面来测量液位,精度为±0.25%。在水位传感器的基础上,采用水下多普勒速度传感器对水位进行测量。
HOW IT WORKS
The instrument electronics measure the time it takes from transmitted sound to return of the echo. With reference to the speed of sound in air, the exact distance of the liquid surface from the sensor can be calculated with high accuracy (±0.25% of maximum range).
Since the speed of sound is affected by air temperature, Greyline ultrasonic level sensors include a built-in temperature sensor. Level/distance measurements are automatically temperature compensated throughout the operating temperature range of the sensor.
The sensor should be positioned so that it has a clear “view” of the liquid surface and away from ladders, pipes or other obstructions. Greyline recommends 1 ft. from the sidewall for every 10 ft. depth (300 mm for every 3 m depth). False echoes from agitators (sweeping under the sensor), turbulence and waves can be filtered and disregarded by the instrument.
Greyline models range from simple 4-20mA level indicating transmitters, to sophisticated monitoring, controlling and data logging models. Return to Greyline Products for Level model details and specifications. For information on a wide range of level instrument technologies including ultrasonics, read Wastewater Level Measurement Techniques.
Doppler flow meters measure flow from outside a pipe with a clamp-on sensor. Greyline Doppler meters continuously transmit high frequency sound (640 kHz) that travels through the pipe wall and into the flowing liquid. Sound is reflected back to the sensor from solids or bubbles in the fluid. If the fluid is in motion, the echoes return at an altered frequency proportionate to flow velocity. Doppler flow meters continuously measure this frequency shift to calculate flow.
Measure Flow of dirty or aerated Liquids from Outside a Pipe
The Doppler effect was first documented in 1842 by Christian Doppler, an Austrian physicist. We hear everyday examples of Doppler: the sound of a train whistle changing pitch as it passes by, or the exhaust noise from a race car as it speeds past our location.
The Doppler technique only works on liquids which contain solids or gas bubbles to reflect its signal. These are “difficult” liquids that may damage regular flow meters: slurries, sludge, wastewater, abrasives, viscous and corrosive chemicals. Because the sensor mounts on the outside of the pipe, there is no pressure drop and no obstruction to flow.
For best performance Doppler sensors should be mounted away from turbulence creating devices like pipe elbows and tees, and away from velocity increasing devices like controlling valves and pumps. Typical accuracy is ±2% of full scale. Doppler instruments include a clamp-on ultrasonic sensor, connecting cable and an electronics enclosure which can be mounted at a convenient location nearby (within 500 ft / 152 m). Sensors can be rated intrinsically safe for mounting in hazardous-rated locations.
Very accurate timing circuits are required but 1% accuracy is quite typical when the transducers can be mounted on a pipe section with evenly distributed flow.
Because the ultrasonic signal must cross the pipe to a receiving transducer, the fluid must not contain a significant concentration of bubbles or solids (less than 2%). Otherwise the high frequency sound will be attenuated and too weak to traverse the pipe. Applications include potable water, cooling water, water/glycol solutions, hydraulic oil, fuel oils and chemicals.
Transit Time transducers typically operate in the 1-2 MHz frequencies. Higher frequency designs are normally used in smaller pipes and lower frequencies for large pipes up to several meters in diameter.
Flumes and weirs are specially designed channel shapes that characterize the flow of water. Common types are Rectangular Weirs, V-Notch Weirs, Parshall flumes and Palmer Bowlus flumes. The choice of flume or weir type depends on the application: flow rate, channel shape and solids content of the water. Contact Greyline Instruments for advice on selection of a suitable flume or weir for your application.
Greyline open channel flow meters can be calibrated to any flume or weir by menu selection. The open channel flow meter electronics use an internal formula to calculate flow rate (Flow = K Hn, where ‘K’ and ‘n’ are constants and ‘H’ is Head as measured by the instrument). Calibration to uncommon or custom flumes can be done by direct entry of ‘K’ and ‘n’ constants. Greyline also offers a PC software program “Find K&n” to develop calibration constants from a flume or weir flow chart.
Greyline open channel flow meters include a non-contacting ultrasonic sensor, connecting cable and an electronics enclosure which can be mounted at a convenient location nearby (within 500 ft / 152 m). Sensors can be rated intrinsically safe for mounting in hazardous-rated locations. The instruments display, totalize, transmit and control, and some models include data logging/flow reporting systems.
Measure open channel flow without a flume or weir An Area-Velocity Flow Meter continuously measures both Level and Velocity to calculate flow volume in an open channel or pipe.
The ultrasonic sensor is installed at the bottom of a pipe or channel. To measure water level the sensor transmits ultrasonic pulses that travel through the water and reflect off the liquid surface. The instrument precisely measures the time it takes for echoes to return to the sensor. Based on the speed of sound in water, the level is measured with accuracy of ±0.25%.
Flow velocity is measured with an ultrasonic Doppler signal continuously injected into the water. This high frequency sound (640 KHz) is reflected back to the sensor from particles or bubbles suspended in the liquid. If the fluid is in motion, the echoes return at an altered frequency proportionate to flow velocity. With this technique the instrument measures flow velocity with accuracy of ±2%.
Greyline Area-Velocity Flow Meters work in partially full and surcharged pipes, rectangular, trapezoid and egg-shaped channels.
Optional – Separate Level and Velocity Sensors
A separate down-looking ultrasonic sensor can be used for highly aerated or turbulent flow applications. It measures level by transmitting ultrasonic pulses through the air to the liquid surface with accuracy of ±0.25%. Along with the level sensor, a submerged Doppler velocity sensor is used to measure the water velocity.



















